118 research outputs found

    An economic perspective on personalized medicine

    Full text link

    A simple method for assigning genomic grade to individual breast tumours

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prognostic value of grading in breast cancer can be increased with microarray technology, but proposed strategies are disadvantaged by the use of specific training data or parallel microscopic grading. Here, we investigate the performance of a method that uses no information outside the breast profile of interest.</p> <p>Results</p> <p>In 251 profiled tumours we optimised a method that achieves grading by comparing rank means for genes predictive of high and low grade biology; a simpler method that allows for truly independent estimation of accuracy. Validation was carried out in 594 patients derived from several independent data sets. We found that accuracy was good: for low grade (G1) tumors 83- 94%, for high grade (G3) tumors 74- 100%. In keeping with aim of improved grading, two groups of intermediate grade (G2) cancers with significantly different outcome could be discriminated.</p> <p>Conclusion</p> <p>This validates the concept of microarray-based grading in breast cancer, and provides a more practical method to achieve it. A simple R script for grading is available in an additional file. Clinical implementation could achieve better estimation of recurrence risk for 40 to 50% of breast cancer patients.</p

    Re-evaluating early breast neoplasia

    Get PDF
    Historically, histomorphological and epidemiological data suggested that atypical ductal hyperplasia and ductal carcinoma in situ are the earliest recognizable neoplastic stages of breast cancer progression. Over the past several years, detailed high-throughput molecular genetic, gene expression and epigenetic analyses have enhanced our understanding of these early neoplastic lesions and have re-shaped our view of human breast cancer progression to include multiple distinct pathways of evolution

    E2F1 and KIAA0191 expression predicts breast cancer patient survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression profiling of human breast tumors has uncovered several molecular signatures that can divide breast cancer patients into good and poor outcome groups. However, these signatures typically comprise many genes (~50-100), and the prognostic tests associated with identifying these signatures in patient tumor specimens require complicated methods, which are not routinely available in most hospital pathology laboratories, thus limiting their use. Hence, there is a need for more practical methods to predict patient survival.</p> <p>Methods</p> <p>We modified a feature selection algorithm and used survival analysis to derive a 2-gene signature that accurately predicts breast cancer patient survival.</p> <p>Results</p> <p>We developed a tree based decision method that segregated patients into various risk groups using <it>KIAA0191 </it>expression in the context of <it>E2F1 </it>expression levels. This approach led to highly accurate survival predictions in a large cohort of breast cancer patients using only a 2-gene signature.</p> <p>Conclusions</p> <p>Our observations suggest a possible relationship between <it>E2F1 </it>and <it>KIAA0191 </it>expression that is relevant to the pathogenesis of breast cancer. Furthermore, our findings raise the prospect that the practicality of patient prognosis methods may be improved by reducing the number of genes required for analysis. Indeed, our <it>E2F1/KIAA0191 </it>2-gene signature would be highly amenable for an immunohistochemistry based test, which is commonly used in hospital laboratories.</p

    The expression level of HJURP has an independent prognostic impact and predicts the sensitivity to radiotherapy in breast cancer

    Get PDF
    INTRODUCTION. HJURP (Holliday Junction Recognition Protein) is a newly discovered gene reported to function at centromeres and to interact with CENPA. However its role in tumor development remains largely unknown. The goal of this study was to investigate the clinical significance of HJURP in breast cancer and its correlation with radiotherapeutic outcome. METHODS. We measured HJURP expression level in human breast cancer cell lines and primary breast cancers by Western blot and/or by Affymetrix Microarray; and determined its associations with clinical variables using standard statistical methods. Validation was performed with the use of published microarray data. We assessed cell growth and apoptosis of breast cancer cells after radiation using high-content image analysis. RESULTS. HJURP was expressed at higher level in breast cancer than in normal breast tissue. HJURP mRNA levels were significantly associated with estrogen receptor (ER), progesterone receptor (PR), Scarff-Bloom-Richardson (SBR) grade, age and Ki67 proliferation indices, but not with pathologic stage, ERBB2, tumor size, or lymph node status. Higher HJURP mRNA levels significantly decreased disease-free and overall survival. HJURP mRNA levels predicted the prognosis better than Ki67 proliferation indices. In a multivariate Cox proportional-hazard regression, including clinical variables as covariates, HJURP mRNA levels remained an independent prognostic factor for disease-free and overall survival. In addition HJURP mRNA levels were an independent prognostic factor over molecular subtypes (normal like, luminal, Erbb2 and basal). Poor clinical outcomes among patients with high HJURP expression were validated in five additional breast cancer cohorts. Furthermore, the patients with high HJURP levels were much more sensitive to radiotherapy. In vitro studies in breast cancer cell lines showed that cells with high HJURP levels were more sensitive to radiation treatment and had a higher rate of apoptosis than those with low levels. Knock down of HJURP in human breast cancer cells using shRNA reduced the sensitivity to radiation treatment. HJURP mRNA levels were significantly correlated with CENPA mRNA levels. CONCLUSIONS. HJURP mRNA level is a prognostic factor for disease-free and overall survival in patients with breast cancer and is a predictive biomarker for sensitivity to radiotherapy.National Institutes of Health, National Cancer Institute (R01 CA116481, P50 CA 5820, P30 CA 82103, U54 CA 112970); Office of Science; U.S. Department of Energy Office of Science, Office of Biological & Environmental Research (DE-AC02-05CH11231

    Mouse models of cancers: opportunities to address heterogeneity of human cancer and evaluate therapeutic strategies

    Get PDF
    The heterogeneity of human breast cancer has been well described at the morphological, molecular, and genomic levels. This heterogeneity presents one of the greatest obstacles in the effective treatment of breast cancer since the distinct forms of breast cancer that reflect distinct mechanisms of disease will require distinct therapies. Although mouse models of cancer have traditionally been used to simplify the study of human disease, we suggest that there are opportunities to also model the complexity and heterogeneity of human cancer. Here, we illustrate the similarities of mouse models to the human condition in the heterogeneity of both pathologies and gene expression. We then provide an illustration of the potential of gene expression analysis methods when used in conjunction with current treatment options to model individualized therapeutic regimes

    The significance of tumour microarchitectural features in breast cancer prognosis: a digital image analysis

    Get PDF
    BACKGROUND: As only a minor portion of the information present in histological sections is accessible by eye, recognition and quantification of complex patterns and relationships among constituents relies on digital image analysis. In this study, our working hypothesis was that, with the application of digital image analysis technology, visually unquantifiable breast cancer microarchitectural features can be rigorously assessed and tested as prognostic parameters for invasive breast carcinoma of no special type. METHODS: Digital image analysis was performed using public domain software (ImageJ) on tissue microarrays from a cohort of 696 patients, and validated with a commercial platform (Visiopharm). Quantified features included elements defining tumour microarchitecture, with emphasis on the extent of tumour-stroma interface. The differential prognostic impact of tumour nest microarchitecture in the four immunohistochemical surrogates for molecular classification was analysed. Prognostic parameters included axillary lymph node status, breast cancer-specific survival, and time to distant metastasis. Associations of each feature with prognostic parameters were assessed using logistic regression and Cox proportional models adjusting for age at diagnosis, grade, and tumour size. RESULTS: An arrangement in numerous small nests was associated with axillary lymph node involvement. The association was stronger in luminal tumours (odds ratio (OR) = 1.39, p = 0.003 for a 1-SD increase in nest number, OR = 0.75, p = 0.006 for mean nest area). Nest number was also associated with survival (hazard ratio (HR) = 1.15, p = 0.027), but total nest perimeter was the parameter most significantly associated with survival in luminal tumours (HR = 1.26, p = 0.005). In the relatively small cohort of triple-negative tumours, mean circularity showed association with time to distant metastasis (HR = 1.71, p = 0.027) and survival (HR = 1.8, p = 0.02). CONCLUSIONS: We propose that tumour arrangement in few large nests indicates a decreased metastatic potential. By contrast, organisation in numerous small nests provides the tumour with increased metastatic potential to regional lymph nodes. An outstretched pattern in small nests bestows tumours with a tendency for decreased breast cancer-specific survival. Although further validation studies are required before the argument for routine quantification of microarchitectural features is established, our approach is consistent with the demand for cost-effective methods for triaging breast cancer patients that are more likely to benefit from chemotherapy

    Comparison study of microarray meta-analysis methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meta-analysis methods exist for combining multiple microarray datasets. However, there are a wide range of issues associated with microarray meta-analysis and a limited ability to compare the performance of different meta-analysis methods.</p> <p>Results</p> <p>We compare eight meta-analysis methods, five existing methods, two naive methods and a novel approach (mDEDS). Comparisons are performed using simulated data and two biological case studies with varying degrees of meta-analysis complexity. The performance of meta-analysis methods is assessed via ROC curves and prediction accuracy where applicable.</p> <p>Conclusions</p> <p>Existing meta-analysis methods vary in their ability to perform successful meta-analysis. This success is very dependent on the complexity of the data and type of analysis. Our proposed method, mDEDS, performs competitively as a meta-analysis tool even as complexity increases. Because of the varying abilities of compared meta-analysis methods, care should be taken when considering the meta-analysis method used for particular research.</p

    Intrinsic bias in breast cancer gene expression data sets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While global breast cancer gene expression data sets have considerable commonality in terms of their data content, the populations that they represent and the data collection methods utilized can be quite disparate. We sought to assess the extent and consequence of these systematic differences with respect to identifying clinically significant prognostic groups.</p> <p>Methods</p> <p>We ascertained how effectively unsupervised clustering employing randomly generated sets of genes could segregate tumors into prognostic groups using four well-characterized breast cancer data sets.</p> <p>Results</p> <p>Using a common set of 5,000 randomly generated lists (70 genes/list), the percentages of clusters with significant differences in metastasis latencies (HR p-value < 0.01) was 62%, 15%, 21% and 0% in the NKI2 (Netherlands Cancer Institute), Wang, TRANSBIG and KJX64/KJ125 data sets, respectively. Among ER positive tumors, the percentages were 38%, 11%, 4% and 0%, respectively. Few random lists were predictive among ER negative tumors in any data set. Clustering was associated with ER status and, after globally adjusting for the effects of ER-α gene expression, the percentages were 25%, 33%, 1% and 0%, respectively. The impact of adjusting for ER status depended on the extent of confounding between ER-α gene expression and markers of proliferation.</p> <p>Conclusion</p> <p>It is highly probable to identify a statistically significant association between a given gene list and prognosis in the NKI2 dataset due to its large sample size and the interrelationship between ER-α expression and markers of proliferation. In most respects, the TRANSBIG data set generated similar outcomes as the NKI2 data set, although its smaller sample size led to fewer statistically significant results.</p

    Abrogation of Junctional Adhesion Molecule-A Expression Induces Cell Apoptosis and Reduces Breast Cancer Progression

    Get PDF
    Intercellular junctions promote homotypic cell to cell adhesion and transfer intracellular signals which control cell growth and apoptosis. Junctional adhesion molecule-A (JAM-A) is a transmembrane immunoglobulin located at tight junctions of normal epithelial cells of mammary ducts and glands. In the present paper we show that JAM-A acts as a survival factor for mammary carcinoma cells. JAM-A null mice expressing Polyoma Middle T under MMTV promoter develop significantly smaller mammary tumors than JAM-A positive mice. Angiogenesis and inflammatory or immune infiltrate were not statistically modified in absence of JAM-A but tumor cell apoptosis was significantly increased. Tumor cells isolated from JAM-A null mice or 4T1 cells incubated with JAM-A blocking antibodies showed reduced growth and increased apoptosis which paralleled altered junctional architecture and adhesive function. In a breast cancer clinical data set, tissue microarray data show that JAM-A expression correlates with poor prognosis. Gene expression analysis of mouse tumor samples showed a correlation between genes enriched in human G3 tumors and genes over expressed in JAM-A +/+ mammary tumors. Conversely, genes enriched in G1 human tumors correlate with genes overexpressed in JAM-A−/− tumors. We conclude that down regulation of JAM-A reduces tumor aggressive behavior by increasing cell susceptibility to apoptosis. JAM-A may be considered a negative prognostic factor and a potential therapeutic target
    corecore